Трансформатор электронный понижающий. Как сделать блок питания из электронного трансформатора Повышение мощности электронного трансформатора

Для острожного, бережливого радиолюбителя, электронный импульсный трансформатор [ЭТ] - это эффективный, удобный, экономичный и простой в устройстве, назначении и свойствах эксплуатации современный энергоприбор.

Так ли это, или все-таки вполне можно применять его в быту и работе, получая на выходе чистый, стабильный сигнал электроэнергии во всех подробностях рассмотрим далее.

Описание, назначение и структурная схема

Любое освещение, будь то бытовое или производственное, в современном мире стремится к безопасности, минимальным габаритам и экономичному энергопотреблению. Особенно, если речь идет о покрытии световым потоком зон с пыльной или влажной средой. Подвалы или душевые, ванные комнаты и подобные им будут тем безопасней, чем напряжение сети в них будет ниже, световой прибор меньше и эргономичней.

Рисунок 1. Принципиальная схема ЭТ

Стремясь охватить все цели к ряду, были созданы системы освещения с электронными трансформаторами, которые запитывают галогенные лампы различной мощности, формы и установки с пониженным напряжением 12В переменного тока. Преобразователи берут на свои входные клеммы сетевое напряжение в ~220В, пропускают через специальную электронную схему на печатной плате импульсный ток и выдают на выход уже более безопасную величину напряжения переменного тока ~12В.

ЭТ обычно изготавливаются в небольших по форме и размерах прямоугольных пластиковых корпусах. Система понижения напряжения ЭТ устроена посредством электронной начинки, спаянной на текстолитовой плате. Микросхема соединена по обоим концам с вводными и выводными проводниками или контактами для подключения.

ЭТ выпускаются различной мощности. Они хорошо зарекомендовали себя в применении в квартирном люстровом освещении или подсветке комнат, где необходимы целые узлы питания в одновременной эксплуатации. Многие люстры на галогеновых источниках питания имеют с завода или требуют к своей работе специальные электронные трансформаторы.

Электронный тип преобразователей – это наиболее простые и понятные устройства для рядовых потребителей и профессиональных монтажников. Могут прекрасно функционировать в совокупности с регуляторами освещения галогеновых ламп – диммеров.


Рисунок 2. Внешний вид ЭТ

Подобная система хорошо изображена на Рисунке 1. В ней к сети силового напряжения 220В подключен регулятор освещения, через который далее медными проводниками запитывается блок преобразования напряжения – ЭТ. Трансформатор выдает нагрузку пониженного напряжения – 12В, которым запитываются лампы накаливания с галогеннами внутри колбы.

Несмотря на большое количество преимуществ, ЭТ обладают рядом ограничений и опасной структурой элементов. Так как это преобразователь понижающего типа по напряжению, электрический ток во вторичной обмотке даже с учетом небольшой мощности (50, 60Вт) будет достаточно сильным – 5-6А. От этого выходные проводники, соединяющиеся с лампами от выходных клемм ЭТ должны быть удалены на расстоянии не более 50 сантиметров по длине. Иначе пойдет негативный процесс развития индуктивного сопротивления в цепи трансформатора.

По техническим характеристикам ЭТ, их установка допускает технологию скрытого монтажа в стенах, конструктивных нишах и за потолком.

Выбрав основным источником питания электронные трансформаторы, их выводные обмотки запрещается подключать в электрическую схему без нагрузки, а его внешние аксессуары могут монтироваться в зависимости от требований.

Если первый рисунок показывал нам комплекс детальных модулей в цепи освещения ламп накаливания, то для полного понимая принципов работы трансформатора необходимо получить знания по его основным элементам.

Без лампы или минимальной нагрузки преобразователь напряжения с начинкой из электроники работать не будет. Для нормального режима работы ему необходимо хотя бы минимальная нагрузка на вторичной обмотке.

На входы ЭТ подается номинальное напряжение ~220В, далее с помощью элементов микросхемы происходит конвертация его величины, стабилизация, очистка (для более мощных и дорогих серий ЭТ) и третий шаг работы электронного преобразователя – это выдача на клеммы выхода напряжения пониженной величины, в зависимости от устройства всего ЭТ различных значений (48 В/36 В/24 В)или ~12В, как в конкретном примере. Габаритные размеры, вес, климатические особенности корпуса делают его наиболее удобным для применения в сетях освещения квартирного или общебытового типа.

Однако, как и любой не только электротехнический товар, преобразователи напряжения с электронными микросхемами по своим характеристикам, качеству работы, длительности использования сильно зависят от того, где, кем и как они были изготовлены. Чем больше закладывалось труда и применялось современных технологий, использовалось качественных материалов и комплектующих, тем и степень или класс ЭТ будет выше и лучше.

Разновидности

В практическом применении и постоянном использовании устройств трансформации электроэнергии классы ЭТ образно принято разделять на три основных:

  1. Cозданы на основе выполнения высоких стандартов требований по качеству и защите от поражения током согласно европейскому союзу. Изначально это приборы, которые прекрасно были даже спроектированы на бумаге еще. Имеют максимальный пакет комплектации в базовой продаже;
  2. Отличная теплоотдача корпуса обеспечивает теплообмен, а значит оборудование не греется при длительных режимах работы;
  3. Установлены в заводском исполнении большинство видов защит от аварийных основных режимов в электрике;
  4. Базовая стабилизация сигнала напряжения, как на входе, так и на выходе ЭТ, позволяет обеспечить составное микрооборудование фильтрации и очистки;
  5. Встроенные системы плавного пуска галогеновых ламп, путем ограничения пусковых токов – обеспечивает длительность работы и осветительных приборов и собственного устройства.

Понятно, что и стоимость подобных устройств будет совершенно отличной и высокой по размеру. Это и является главным недостатком такого оборудования. Качественно во всем, но очень дорого.

Серия таких электронных преобразователей отличается от любых других видов обязательным наличием в своем устройстве защит от аварий – режима перегрузки и возникновению состояния КЗ. Устройства этого класса дословно повторяют перевод с английского языка его названия – «Средний». Они действительно несут в себе стабильную работоспособность, надежность выходного сигнала напряжения, эксплуатационные свойства. Многие модели класса «Медиум» комплектуются хорошим токоограничивающим блока электроники с базовой сборки трансформатора или имеют возможность их установки в свой состав.

Тем не менее, комплектация такую полноту в каждом пакете поставки ЭТ не гарантирует обязательное наличие фильтров, стабилизаторов, но в защите или любых других качественных параметров оценки собственного материала – в 99% случаях успешная поставка требуемого.

ЭТ класса «Economics»

Громадный спектр этих трансформаторов производится по всему Китаю и близлежащий Азиатских странах. И что самое интересное согласно статистическим данных продаж ЭТ – именно этот класс трансформаторов максимально востребован потребителями сегодня.

Самый дешевый поток некачественных элементов очень часто еще на этапе покупки или в момент монтажа устройства на объекте показывает уже заведомый брак, дефект материала, неисправность или обычный формат пересортицы оборудования этой серии. Стоит быть к этому готовым при покупке ЭТ класса «economics»

Несмотря на все недостатки, трансформаторы «Экономик» - это изделия среди электронных трансформаторов в продаже пользуются успехом за:

  • некачественного материала в электрических связях и в геометрическом состоянии позволяет ощутить существенную разницу в стоимости выгодную покупателю при покупке ЭТ «экономик» в сравнении с другими подобными агрегатами;
  • покупая за копейки почти уже не использующиеся массово трансформирующие агрегаты – клиенту становится доступен эффект «Приобретенной мощности электротехнического устройства». Факт актуален, когда производится самостоятельная сборка собственных блоков питания по индивидуальным проектам и требуется некое количество электронных деталей в них. Экономия в стоимости дает возможность развернутся конструированию новых блоков питания, используя ЭТ в качестве «доноров»
  • несоответствие заявленных характеристик устройства (анализ данных на основе динамики данных за прошлый период; в сравнении с габаритами и электрическими величинами с любым другим ТТ;

Сегодня в электроосвещении все больше и больше занимают лидирующие позиции модули светодиодного освещения в трех основных матрицах:

  • гибкие ленты LED для декора света;
  • лампы LED с цоколями любого типа;
  • матрица LED встроенная в корпуса множества светильников.

Их питание обеспечивается более сложным устройством в составе с импульсным трансформатором и производя работу по конвертации электроэнергии по КПД значительно выше ЭТ.


Источники питания с выпрямителями, питаются переменным током бытовой сети, а с выхода снимается постоянный ток мульти разнообразны в своих исполнениях и видах. Такие ИП можно подобрать для любого светодиодного освещения современного и декорированного типа.

Однако ЭТ и драйверы LED объединяет одно понятие – оба преобразователи электроэнергии, полученной обычным способом через домашнюю розетку на вводные клеммы, оба имеют модуль электронной начинки, расположенный на специальной диэлектрической пластины и на ней же коммутирован пайкой.

Платы, на которых собирается микросхема ЭТ выполнены на металлических, алюминиевых основаниях, с диэлектрическим основанием – текстолитом – с возможностью посадки микроэлементов на него.

Как раз масштабируя статью в следующей главе речь пойдет о этом элементе.

Схемы и описание работы печатных плат

Печатная плата – это пластина диэлектрика, на которой согласно построению электрической схемы располагается определенные элементы проектируемого оборудования и электромеханической связью соединяются между собой. Простой вариант ее исполнения выполняется в виде платы, одна сторона которой содержит медные проводники для соединения электрических элементов устройства, а вторая носит диэлектрические свойства. Такие платы так и называются однослойными или односторонними.

Если оборудование имеет сложную структуру и большое количество модулей (в основном при промышленном производстве оборудования) применяются печатные платы с нанесением двухслойного рисунка соединения элементов, или даже многослойного, где контактный рисунок наносится не только с двух сторон, но межслойном промежутке. Выполняют такие сложные технологии на компьютерном оборудовании и станках. Используя в виде контактов позолоченные материалы или олово высокой проводимости.

В своем описании плата – это скелет любой электронной схемы, которая получает питание, проводит его к каждому установленному на ней элементу и выводит требуемые величины на выход оборудования. Она обеспечивает необходимый электрический контакт и проводимость узлов устройства, а также позволяет устанавливать безопасно электрическую схему в различные корпуса устройств, обеспечивая требуемые диэлектрические свойства.

В домашних условиях так же производят изготовление печатных плат. Однако их изготовление в таких условиях происходит гораздо проще, чем в промышленных масштабах. В качестве диэлектрического материала используется в основном текстолит, нанесение электрически проводимых дорожек обеспечивается вначале специальным маркером или карандашом (сейчас уже редко химическим травлением) возможно компьютерная печать схем для платы с дальнейшим их переводом на текстолит. В качестве проводников используют в основном электротехническое олово путем пайки ручным методом всех контактных дорожек.

По сравнению с заводским исполнением печатных плат, ручное их изготовление в домашних условиях отличается меньшей красотой и качеством, но при должном опыте вполне может верно служить в работе проектируемых систем простейшей или средней электроники.

Электрическая схема – это чертеж элементов устройства, обозначенных специально принятыми к исполнению по ГОСТам чертежными обозначениями, соединенных между собой условными проводниками в виде прямых линий. Ее основная функция включает себя показания работоспособности устройства, указание направление соединения устройств, обозначения величин входных и выходных параметров блоков и устройств. С помощью электрической схемы производится понимание работы незнакомого электронного устройства, его диагностика и ремонтные работы.

В качестве примеров ниже представлены электрические схемы с краткими дополнениями описаниями самых распространенных электронных трансформаторов, которые существуют на практике. Изучения их элементов и электрических схем поможет радиолюбителям модернизировать ЭТ, создавать собственные проекты на их базе.

L&B

Электронный трансформатор класс «economics» мощностью до 60Вт. Его китайский набор комплектующих делает работу устройства недолговременной, нестабильной, но экономичная базовая стоимость всего ЭТ позволяет успешно использовать его на практике.

Рисунок 5. Схема L&B

Tashibra 200 W

Электронный трансформатор с таким звучным названием для русского языка – «Тошибра» представлен в виде преобразователя с выходной мощностью 200Вт. Однако качество элементов относится к стране производителю Китай, что говорит так же о невысоком качестве элементов и не слишком надежной работе на практике.

Рисунок 6 . Схема Tashibra

Horoz HL370

Этот ЭТ уже являет собой сборку заводского Китая. В нем уже более качественные элементы, повышенная надёжность в работе. Данный ЭТ прекрасно работает с номинальной нагрузкой, при этом не испытывает режима перегрева.

Рисунок 7. Схема Horoz HL370

Relco Minifox 60 PFS-RN1362

Модель родом из Итальянской производственной линии. ЭТ, который создан для качественной стабильной работы в сети. Имеет все необходимые предпосылки: входной фильтр напряжения, защиту от аварийных режимов работы (КЗ и перегрузки), возможность безопасного отключения в момент перегрева. Элементы силовых ключей установлены с запасом по мощности специально, чтобы избежать установки дополнительной системы охлаждения от перегрева.

Рисунок 8. Схема Relco Minifox 60

Horoz HL371

Блок из Китая с выходной мощностью в 105Вт. Особенно ничем не отличается от своего меньшего «брата» ЭТ HL370 ни по качеству, ни по производительности.

Рисунок 9. Схема Horoz HL371

Feron TRA110-105W

Китайский производитель светодиодного освещения выпускает собственные ЭТ мощностью 105Вт. Однако производитель хоть и относит себя к заводским китайским промышленникам – качество его изделий еще далеки от идеальных.

Рисунок 10. Схема Feron TRA110-105W

Более качественная модель китайского производитель осветительных приборов Feron, но в тоже время по годам выпуска очень старая, к тому же для нее не сохранилось ни в одном источнике электрической схемы. Есть только визуальное фото ЭТ.

Выходная мощность данного трансформатора составляет 105Вт. КПД, заявленное производителем 99%.

Рисунок 11. Feron ET105

Польский ЭТ различных ступеней по мощности для питания галогенных ламп на схеме представлен одним из видов с выходом в 105Вт. Его вполне можно отнести к устройствам класса «Medium». Имеет определенный тип сетевых защит.


Рисунок 12. Brilux BZE-105

Buko BK452

Форма, внутренние элементы блока сначала начинают радовать, но после полного анализа этого ЭТ выясняется, что блок не имеет защит от КЗ и перегрузки, собран в Китайской республике, хоть и на заводе, но весьма некачественно.

Рисунок 13. Схема Buko BK452

Horoz HL375 (HL376, HL377)

Рисунок 14. Схема HL375/HL376/HL377

Vossloh Schwabe EST 150/12.645

Рисунок 15. Схема Vossloh Schwabe EST 150/12.645

Рисунок 16. Схема Vossloh Schwabe EST 150/12.622

Оба ЭТ известного немецкого бренда на Рисунок 15 и Рисунок 16 представляют собой качественные и надежные преобразователи напряжения, способные в случае модернизации выпрямить величину напряжения во множество значений и величин, что дает для проектирования устройств широкий спектр и свободу создания.

Brilux BZ-150B (Kengo Lighting SET150CS)

Рисунок 17. Схема Brilux BZ-150B (Kengo Lighting SET150CS)

ЭТ типа Brilux и Kengo практически идентичны в своей электрической схеме. Оба имеют мощную базу элементов. Достаточно солидную выходную мощность. По качеству сборки и оценке внутренних элементов своего содержания относятся к классу «Premium». А исключительностью обладают из-за наличия встроенной защиты от аварий (перегрузки и КЗ) выполненной в двойном эквиваленте или степени. Первая степень работает на автоматическое восстановление подачи питания и завязана с плавным пуском питания для ламп, а вторая выполняет блокировку работы всего ЭТ в случае достижении 65% режима перегрузки.

Feron TRA110-200W (250W)

Рисунок 18. Схема Feron TRA110-200W (250W)

Рисунок 19. Схема Delux ELTR-210W

К классу «Medium» данный ЭТ относят лишь из-за наличия системы защиты от перегрузки, но по всем показателям выполнен он очень бюджетно.

EK210

Рисунок 20. Схема EK210

Мощные силовые ключи в устройстве. Имеется двойная защита от перегрузок. Неплохая выходная мощность.

Kanlux SET210-N

Рисунок 21. Схема Kanlux SET210-N

Устройство силовых ключей создано на полевых транзисторах, что дает повышенный ресурс работы, высокое качество, компактность в совокупности с надежной работой и высокой выходной мощностью смело причисляют этот ЭТ к классу «Premium».

Рисунок 22. Схема Lemanso TRA25 250W

Выходная мощность публикуемого ЭТ составляет 250Вт. Данный ЭТ очень удобно использовать в целях модернизации по увеличению мощности, удаляя обратную связь по току и налаживая связь по напряжению. В базовом использовании не имеет интереса, так как производится в Китае и кроме величины выходной мощности не имеет особого интереса для обзора.

Asia Elex GD-9928 250W

Рисунок 23. Схема Asia Elex GD-9928 250W

Модель ЭТ выдает мощность пассивной нагрузки в 250Вт для галогенных осветительных приборов. Не имеет особенных или исключительных особенностей, но как платформа для модернизации или создания более качественного преобразователя прекрасно сгодится своей элементной базой.

Get 0902

Рисунок 24. Схема Get0902 120W

ЭТ полностью китайского производства в пластиковом корпусе. Электрической схемы на такой преобразователь найти не удалось. Известна только его выходная мощность нагрузки в 120Вт.

Hojoz HL372

Рисунок 25. Схема Hojoz HL372

Компактный ЭТ для запуска галогенных осветительных приборов от Турецкого производителя Hojoz марки HL372 имеет выходную мощность в 150Вт. Электрической схемы найти не удалось.

ЕТ105Т А5

Рисунок 26. Схема ЕТ105Т А5 105Вт

Это представитель электронных трансформаторов отечественных фирм по производству преобразователей напряжения для питания освещения. Выходная мощность 105Вт. Мониторинг средней цены трансформатора и отсутствие электрической схемы на многих электронных площадках относит его к низшему сегменту качества таких изделий.

XYDB 160

Рисунок 27. Схема XYDB 160 160Вт

Электрической схемы на устройство вновь не обнаружено. Весь мониторинг по сети Интернет сводится к оценки низкого качества устройства. Хотя малые габариты с такой мощностью могут быть плюсом этого оборудования.

ET190E

Очередная модель китайской народной республики подозрительного качества, устройства и надежности ЭТ для питания освещения. Схемы не обнаружено.

Рисунок 28. Схема ET190E 150Вт

Обзорный поиск в Интернете дает параметр мощности в диапазоне от 50 до 150Вт.

SET105LX

Рисунок 29. Схема SET105LX

Дистрибьютор большого количества всяческого осветительного оборудования из Китая, отечественная компания «Эра» не дает электрической схемы на подобное изделие. Однако заявляет его выходную мощность в 105Вт, утверждает, что устройство снабжено защитами от аварийных режимом сети, противостоит перепадам температуры и сетевого напряжения. Но исходя из отсутствия на него опубликованных электросхем, такие заявления мало правдоподобны. Еще один вид ЭТ класса «economics».

YMET20C AC220

Рисунок 30. Схема YMET20C AC220

Модель производства Китай. Параметры очень слабые на выходе – мощность 20Вт, при 12В выходном напряжении. Технических характеристик и схемы не найти.

KEB1200600l

Рисунок 31. Схема изделия KEB1200600l

Еще меньше информации относительно приведенной модели трансформатора напряжения электронного типа. Даже по его номинальным значениям на выходе или входе подлинную информацию найти не удалось. Предположительно это ЭТ с выходным параметром в 80Вт мощности.

Как изготовить блок питания своими руками

Блок питания для современных электрических приборов бытового или специального назначения это одна из самых важных вещей для их нормальной, постоянной работы. Их великое множество в зависимости от назначения устройств, которых они питают, и разнятся между собой лишь двумя электротехническими величинами – напряжения и тока, на которых и основывается их проектирование и последующее создание даже собственными силами.

Изготовить элемент питания для электрического прибора своими руками в нынешнем развитии электроники и доступности всех ее элементов не только просто, но и очень интересно.

Однако для создания работоспособного блока питания в обязательном порядке должен соблюдаться определенный спектр технических условий, набор правил по которым производство непромышленного типа питающего блока пройдет верно, без ошибок.

Технические условия изготовления

В их состав в заводском формате изготовления блоков питания (БП) входит значительное количество требований, условий, которыми должен удовлетворять любой проект будущего устройства питания.

В случае создания БП в домашних условиях, кустарным способом, своими руками тоже можно выделить несколько главных технических условий, выполнение которых должно выполнится перед началом проведения работ для его производства:

  1. Техника безопасности при работе с действующим электрическим напряжением и приборами, потребляющими или выдающими определенные величины напряжения и тока. Все пункты должны быть в обязательном порядке соблюдаться и выполнены.
  2. Перед началом практических работ с БП, следует определиться с значением максимального тока в данном будущем устройстве.
  3. Определить величину выходного напряжения устройства.
  4. Установить, какой тип БП будет создаваться: регулируемый или нерегулируемый. Для выяснения и реализации этого пункта условий потребуется возможно дополнительное изучение технической литературы по радиоэлектронике и электротехнике. Особенно повышенная компетенция необходима если выбран для создания более универсальный, выгодный и технически сложный регулируемый тип будущего БП.
  5. Выбор схемы проектируемого БП – станет основным и практически последним условием для подготовки перед созданием питающего блока. Если проект создается впервые и у создателей нет большого опыта по производству таких вещей – схему стоит выбрать для простого односложного источника питания, где все номинальные значения и параметры электрических величин достаточно просты и наиболее распространены для сбора и установки в проектируемое устройство. Чем проще будет схема проектируемого БП, тем легче будет найти комплектующие к нему в радиомагазинах, а оставшиеся элементы взять из других устройств.

Но иногда хочется создать сразу современный и очень выгодный импульсный блок питания. Для его изготовления требуется запастись определенным терпением и приготовится к преодолению нескольких трудных моментов. Это устройство имеет определенные этапы своего создания, подробно коснуться которых возможно в следующей главе статьи.

Создание импульсного блока питания

Для создания такого устройства типа импульсного блока питания (ИБП) необходимо несколько основных элементов. Главная цель при производстве – это достижение максимальной величины выходного тока, для питающей нагрузки, которая так же будет поддерживать и значение выходного напряжения. Таким образом, используя:

  • трансформатор понижающий 12В – прекрасно подойдет с любого электронного трансформатора;
  • диодный мост – при покупке в лавке радиодеталей четырех диодов размерами 0,5 х 0,2 мм схемы SOIC вполне можно создать необходимый для проектируемого ИБП;
  • микросхема – часть платы опять же можно взять путем разборки одного или нескольких, имеющихся под рукой ЭТ, или приобрести отдельную специальную плату в магазине радиодеталей;
  • фильтр конденсатор – покупка четырех конденсаторов в радиомагазине с определенной величиной емкости;
  • дросселя – дросселя с радиальными выводами не являются редкими деталями в магазинах электроники;
  • блок защиты – реализуется четырьмя цилиндрическими предохранителями на токи срабатывания не более 0,16А (легко купить в том же магазине электроники);

Собрав все вышеуказанные детали в своем арсенале, прежде чем начать практические работы по сборке ИБП стоит детально разобрать по какой схеме произойдет его сборка. Одной из самых распространенных схем, по которой возможно собрать будущий импульсный блок питания, даже регулируемого типа, представлена ниже:

Рисунок 32. Схема для сборки импульсного блока питания

Как видно из схемы питание ИБП получает от сети переменного напряжения ~220В через резистор R1 и диодный выпрямитель VD1. Его трансформатор импульсного типа имеет три обмотки:

  1. Первичную или коллекторную.
  2. Базовую.
  3. Вторичную.

Он не имеет на выходе стабилизации напряжения, или других защит от аварийных режимов в сети. Однако даже режим КЗ (короткого замыкания) этому блоку нестрашен. Вся суть в резисторе R1, и протекании режима аварии типа КЗ, который сопровождается повышением величины тока на первичной обмотке блока питания. А ней как известно установлен токоограничитель R1, который своей номинальной работой отсекает любой режим аварии.

Создании по такой схеме ИБП приведет к получению импульсного источника питания небольшой мощности – 3,5- 4 Вт, и номинальным током не более 15 мА.

Подготовку печатной платы для создания подобного ИБП ведут по специальным технологиям:

  1. Используя специальный маркер для плат.
  2. Применяя карандаш для плат.

Есть еще несколько методов, с помощью которых возможно реализовать расчерчивание схем на печатных платах, описывать которые здесь нет необходимости в подробностях.

Трех обмоточный трансформатор возможно взять из начинки электронных трансформаторов подогнав или перемотав его обмотки под нужды проектируемого устройства. Для первичной обмотки достаточно будет 200 витков проводником до 1 мм сечения, базовая обмотка при этом будет содержать всего около 10 витков. А вот количество витков на выходной обмотки будет зависеть от какого, какая величина выходного напряжения будет интересовать проектировщика в конструируемом устройстве.

В итоге используя техническую литературу из справочников, знакомясь с примерами в сети Интернет, как текстового формата, так и многих видеоматериалов легко собрать устройство питания импульсного типа небольшого мощности. А регулируя параметры сопротивления, добавляя вспомогательные элементы или включая в схему стабилизаторы можно создавать его разновидности более мощного типа.

Способы увеличения мощности

Возможность оптимизировать практически любой электронный трансформатор путем увеличения его выходной мощности доступна даже в домашних условиях. Это делается при обязательном соблюдении всех условий техники безопасности при выполнении работ, определенном опыте работе с электронным и вспомогательным оборудованием и реализуется путем замены нескольких основных элементов:

  1. Замена или переделка импульсного трансформатора – сняв с установленного на блоке трансформатора обе обмотки, стоит добавить к нему еще один точно такой же по размерам и габаритам кольцевой сердечник, путем приклеивания одного к другому. После чего необходимо произвести повторную намотку витков обмотки трансформатора, предварительно рассчитав их количество в зависимости от текущего и требуемого вольтажа.
  2. Работа с полумостом в схему – производится смена его конденсаторов и установка других с большей емкостью, но меньшей величины вольтажа (как пример, снятие емкостей 0,22 мкФ 630 вольт и установка на их место 0,5 мкФ 400 вольт).
  3. Корректировка силовых ключей – смена транзисторов, представляющих в схеме силовые ключи на более мощные по своим техническим характеристикам.

При такой переделке схемы ИБП с целью повышения его мощностных характеристик ведут комплексную работу по установке фильтрующего устройства сетевого напряжения в виде сглаживающего конденсатора, смены дросселей, установки стабилизаторов на выходную часть схемы электронного устройства.

Так как электронный трансформатор - это устройство, предназначенное для работы в основном с пассивной нагрузкой, то путем, описанным выше, используя в помощь необходимые технические руководства и примеры из сети Интернет достаточно легко повысить выходную мощность устройства практически в десять раз.

Другие способы применения

Изучая все глубже и глубже процессы электроники, познавая каждый из ее элементов как можно подробнее, получая определенные практические навыки и опыт по работе в начале с элементарными единицами преобразования электроэнергии возможно создавать позже и другие устройства, которые будут очень полезны для дома и быта.

К примеру, используя все процессы электроники, а также имея в своем распоряжении обычный электронный трансформатор с выходным напряжением в 12В, вполне допустимо достаточно просто собрать из него полноценного зарядное устройство для многих аккумуляторных батарей.

Чтобы совершить правильное превращение электронного трансформатора в зарядное устройство для автомобильных аккумуляторов стоит прежде всего заняться перемоткой его трансформатора.

Проводятся необходимые расчеты количества витков вторичной обмотки, чтобы превратить из штатных восьми витков, выдающих ранее рабочее напряжение в районе 10,8 – 11 вольт, изготовить вторичную намотку в 23-24 витка. Именно такое количество витков позволит реализовать регулируемой устройство заряда АКБ с диапазоном напряжения от 0 до 29 вольт.

Трансформатор демонтируется из платы ЭТ, снимается вторичная обмотка и производится намотка новой.

Второй шаг на пути создания ЗУ для авто АКБ будет создание выпрямителя постоянного тока с параметрами минимального тока диодов до 10 ампер. Установка емкостного конденсатора после диодного выпрямителя позволит снимать показания напряжения.

Благодаря подробным описаниям примеров конструирования ЗУ для авто аккумуляторов возможно создать из электронного трансформатора отличный зарядник для бытовых нужд.

Создание такого устройство возникает из его основного принципа действия – нагреватель работает при воздействии на металл электрических токов Фуко (более подробно это понятие токов стоит изучить дополнительно в описаниях из технических справочников или учебников электроники).

Чтобы создать подобный нагреватель из электронного трансформатора, который является импульсным источником питания стоит поработать с модернизацией его трансформатора. Демонтировав его с платы устройства необходимо изготовить из него некое подобие индуктора, опять же для реализации основного принципа действия нагревателя. На основе ферромагнитной чашки в виде сердечника нового трансформатора стоит произвести намотку проводников не менее 100 витков диаметром около 0,6 мм. С концов проводов снимается лаковая изоляция и производится подключение его обратно на место в плату, где ранее стоял трансформатор.

По сути, создание такого нагревателя уже произведена. С его помощью возможно плавить металл толщиной около 1,5 мм, на основе принципов воздействия токов Фуко на металлические поверхности

Как изготовить самодельный регулируемый стабилизированный блок

Чтобы сделать указанный в заголовке блок из электронного трансформатора потребуется сам ЭТ, несколько технических доработок его схемы, определенные детали из магазина радиоэлектроники, инструмент для работы, измерительная аппаратура, определенные навыки в такой работе и обязательное соблюдение правил и техник по безопасности при работе с действующим электрическим током и напряжением.

Доработки связаны с установкой в схему ЭТ на выходной участок сглаживающего фильтра в виде емкостей конденсаторов, выпрямительного моста с мощными диодами, возможной доработкой обмоток самого трансформатора модернизируемого импульсного источника питания, путем увеличения на них количества витков, а так же изменением обратной связи в схеме ЭТ, для реализации регулировки выходного напряжения. Такая опция реализуется переработкой обратной связи в схеме трансформатора ее сменой с токовой величины на величину напряжения и установкой дополнительной обмотки в цепь трансформатора.

По типу схемы на Рисунке 5 с небольшими доработками и изменениями, используя элементы защиты, стабилизации, фильтрации входных и выходных величин тока и напряжения возможно создание самодельного регулируемого стабилизированного блока даже в домашних условиях. Добавив в схему потенциометр и сменив силовые ключи на более мощные по величине, установив несколько токоограничивающих резисторов возможно получить такой блок питания, который будет обладать необходимыми выходными параметрами для питания требуемых электроприборов, к тому же иметь защиты от всех аварийных режимов, возможных к возникновению в электрической сети.

Небольшая работа фантазии мастера позволит реализовать создание корпуса под такой стабилизатор, придумать элементы его ручного управления, системы охлаждения, световой сигнализации, используя ряд всех тех же простых элементов электроники.

Проектировать и создавать модернизированные устройства из обычного ЭТ в деталях было разобрано выше. Проектировать, создавать свои собственные блоки питания импульсного типа в домашних условиях доступно опытным мастерами или радиоэлектронным любителями.

Но помимо созидания, такие бывалые специалисты должны уметь и отремонтировать свои устройства в случае, если с ними произошли какие – либо сбои или неполадки.

Уметь правильно провести защитную диагностику цепей и модулей всего блока для определения зоны поломки и прочих нюансов ремонта. Для этого даже разработана негласная структура действия ремонтных работ:

  1. Обеспечение и соблюдение всех требований по технике безопасности до, вовремя после проведения ремонтных работ.
  2. Уметь применять определенные защитные меры в момент тестирования цепей и модулей блока питания. Элементарной защитой является применение обычной лампочки для тестирования правильной работы трансформатора и других модулей, которая подключается последовательно в цепь его первичной обмотки. В этом случае, если соединение произведено неправильно – основной удар электроразрядом придется не на сетевое напряжение, а на внутреннюю цепь лампы, если все будет в норме – лампа останется целой.
  3. Перед проведением работ по ремонту или обслуживанию необходимо найти электрическую схему, по которой собирался данный блок – выполняется поиском на корпусе устройства, в его паспортных документах, если модуль самодельный – исходники от сборщиков или информация по схеме в сети интернет.
  4. Знание правильной работы с корпусами блоков – понимание их типов и видов – блоки электроники могут быть разборного и неразборного типа, металлической и пластиковой основы. Если корпуса свободно разбираются – требуется освободить электротехническую часть от всего лишнего. Особенно металлических элементов, если блоки пластиковые – аккуратность будет преимуществом на пути разборки. В случае, если блоки неразборные – тестирование блока под напряжением проводится с соблюдением всех правил безопасности и с помощью защитным элементов.
  5. Применение измерительной аппаратуры и инструментов для работы – вся вспомогательная и измерительная техника для ремонта оборудования должна быть в исправном состоянии и с актуальными даты поверочных испытаний для уверенности в правильности всех показаний.
  6. Визуальная оценка оборудования, если ремонт проводится после аварийного режима – как правило, в случае аварийных режимов работы блоков питания, выделения дыма из внутренностей устройства, места оплавления являются обязательными спутниками устройств. Правильная и аккуратная оценка таких приборов, обесточивание их от сети питание и медленная разборка позволит избежать еще больших повреждений блоков и его механизмов.

Постоянное повышение компетенции и знаний в науке электронике, проведение опытных работ с целью наработки навыков по сборке устройств электроники и их модернизации, применение технических расчетов и справочников при реализации таких работ, аккуратность, осторожность и терпение смогут принести продуктивные плоды в создании, эксплуатации и ремонте не только электронных трансформаторов, но и любых других систем электроники.

Недавно в магазине на глаза попался электронный трансформатор для галогенных ламп. Стоит такой трансформатор копейки - всего 2,5$, что в разы дешевле стоимости используемых в нем компонентов. Блок был куплен для опытов. Как позже оказалось, он не имел защиту и при КЗ случился настоящий взрыв... Трансформатор был довольно мощным (150 Ватт), поэтому на входе был установлен предохранитель, который буквально лопнул. После проверки, оказалось, что половина компонентов сгорело. Ремонт обойдется дорого, да и незачем тратить нервы и время, лучше купить новый. На следующий день были куплены сразу три трансформатора на 50, 105 и 150 ватт.

Планировалось доработать блок, поскольку это был ИБП - без каких-либо фильтров и защит.

После доработки должен был получиться мощный ИБП, основная особенность которого - компактность.
Для начала блок был снабжен сетевым фильтром.

Дроссель был выпаян из блока питания DVD проигрывателя, состоит из двух идентичных обмоток, каждая содержит по 35 витков провода 0.3мм. Только проходя через фильтр, напряжение подается на основную схему. Для сглаживания НЧ помех использовались конденсаторы на 0.1 мкФ (подобрать с напряжением 250-400 вольт). Светодиод показывает наличие сетевого напряжения.

Регулятор напряжения

Была использована схема с применением всего одного транзистора. Эта самая простая схема из всех существующих, содержит пару компонентов и работает очень хорошо. Недостаток схемы - перегрев транзистора при больших нагрузках, но все не так уж и страшно. В схеме можно использовать любые мощные биполярные НЧ транзисторы обратной проводимости - КТ803,805,819,825,827 - рекомендую использовать последние три. Подстроечник можно брать с сопротивлением 1...6.8к, дополнительный защитный резистор берем с мощностью 0,5-1 Ватт.
Регулятор готов, идем дальше.

Защита

Еще одна простая схема, по сути это защита от переплюсовки. Реле буквально любое на 10-15 Ампер. Диод тоже можно применить любой выпрямительный, с током 1 ампер и более (отлично справляется широко применяемый 1N4007). Светодиод сигнализирует о неправильной полярности. Эта система отключает напряжение, если на выходе КЗ или неправильно подключено проверяемое устройство. БП можно использовать для проверки работоспособности самодельных УНЧ, преобразователей, автомагнитол и т.п., при этом не нужно боятся, что вдруг перепутаете полярность питания.

В дальнейшем мы рассмотрим еще несколько простых переделок электронного трансформатора, ну а пока у нас есть простой, компактный и мощный ИБП, который можно использовать в качестве лабораторного блока для начинающего.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Т1 Биполярный транзистор

КТ827А

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
Диодный мост 1 В блокнот
С1, С2 Конденсатор 0.1 мкФ 2 В блокнот
С3 Конденсатор 0.22 мкФ 1 В блокнот
С4-С5 Электролитический конденсатор 3300 мкФ 2 В блокнот
R2 Резистор

480 Ом

1 В блокнот
R3 Переменный резистор 1 кОм 1 В блокнот
R4 Резистор

2.2 кОм

1 В блокнот
R5 Резистор

Работа трансформатора сроится на преобразовании тока от сети с напряжением 220 В. Устройства делятся по количеству фаз, а также показателю перегрузки. На рынке представлены модификации однофазного и двухфазного типов. Параметр перегрузки тока колеблется от 3 до 10 А. При необходимости можно сделать электронный трансформатор своими руками. Однако для этого в первую очередь важно ознакомиться с устройством модели.

Схема модели

Схема электронного 12В предполагает использование пропускного реле. Непосредственно обмотка применяется с фильтром. Для повышения тактовой частоты в цепи имеются конденсаторы. Выпускаются они открытого и закрытого типа. У однофазных модификаций используются выпрямители. Указанные элементы необходимы для повышения проводимости тока.

В среднем чувствительность у моделей равна 10 мВ. При помощи расширителей решаются проблемы с перегрузками в сети. Если рассматривать двухфазную модификацию, то у нее используется тиристор. Указанный элемент, как правило, устанавливается с резисторами. Емкость их в среднем равна 15 пФ. Уровень проводимости тока в данном случае зависит от загруженности реле.

Как сделать самостоятельно?

Сделать своими руками можно легко. Для этого важно использовать проводное реле. Расширитель для него целесообразно подбирать импульсного типа. Для увеличения параметра чувствительности устройства используются конденсаторы. Многие специалисты рекомендуют резисторы устанавливать с изоляторами.

Для решения проблем со скачками напряжения припаиваются фильтры. Если рассматривать самодельную однофазную модель, то модулятор целесообразнее подбирать на 20 Вт. Выходное сопротивление в цепи трансформатора должно составлять 55 Ом. Непосредственно для подключения устройства припаиваются выходные контакты.

Устройства с конденсаторным резистором

Схема электронного трансформатора для 12В предполагает использование проводного реле. В данном случае резисторы устанавливаются за обкладкой. Как правило, модуляторы используются открытого типа. Также схема электронного трансформатора для галогенных ламп 12В включает выпрямители, которые подбираются с фильтрами.

Для решения проблем с коммутацией необходимы усилители. Параметр выходного сопротивления в среднем составляет 45 Ом. Проводимость тока, как правило, не превышает 10 мк. Если рассматривать однофазную модификацию, то у нее имеется триггер. Некоторые специалисты для увеличения проводимости используют триггеры. Однако в данном случае значительно повышаются тепловые потери.

Трансформаторы с регулятором

Трансформатор 220-12 В с регулятором устроен довольно просто. Реле в данном случае стандартно используется проводного типа. Непосредственно регулятор устанавливается с модулятором. Для решения проблем с обратной полярностью имеется кенотрон. Использоваться он может с обкладкой или без нее.

Триггер в данном случае подсоединяется через проводники. Указанные элементы способны работать только с импульсными расширителями. В среднем параметр проводимости у трансформаторов данного типа не превышает 12 мк. Также важно отметить, что показатель отрицательного сопротивления зависит от чувствительности модулятора. Как правило, он не превышает 45 Ом.

Использование проводных стабилизаторов

Трансформатор 220-12 В с проводным стабилизатором встречается очень редко. Для нормальной работы устройства необходимо качественное реле. Показатель отрицательного сопротивления составляет в среднем 50 Ом. Стабилизатор в данном случае фиксируется на модуляторе. Указанный элемент в первую очередь предназначен для понижения тактовой частоты.

Тепловые потери при этом у трансформатора незначительные. Однако важно отметить, что на триггер оказывается большое давление. Некоторые эксперты в сложившейся ситуации рекомендуют использовать емкостные фильтры. Продаются они с проводником и без него.

Модели с диодным мостом

Трансформатор (12 Вольт) данного типа производится на базе селективных триггеров. Показатель порогового сопротивления у моделей в среднем равняется 35 Ом. Для решения проблем с понижением частоты устанавливаются трансиверы. Непосредственно диодные мосты используются с различной проводимостью. Если рассматривать однофазные модификации, то в этом случае резисторы подбираются на две обкладки. Показатель проводимости не превышает 8 мк.

Тетроды у трансформаторов позволяют значительно повысить чувствительность реле. Модификации с усилителями встречаются очень редко. Основной проблемой трансформаторов данного типа является отрицательная полярность. Возникает она вследствие повышения температуры реле. Чтобы исправить ситуацию, многие эксперты рекомендуют использовать триггеры с проводниками.

Модель Taschibra

Схема электронного трансформатора для галогенных ламп 12В включает в себя триггер на две обкладки. Реле у модели используется проводного типа. Для решения проблем с пониженной частотностью применяются расширители. Всего у модели имеются три конденсатора. Таким образом, проблемы с перегрузкой в сети возникают редко. В среднем параметр выходного сопротивления держится на уровне 50 Ом. Как утверждают специалисты, выходное напряжение на трансформаторе не должно превышать 30 Вт. В среднем чувствительность модулятора составляет 5,5 мк. Однако в данном случае важно учитывать загруженность расширителя.

Устройство RET251C

Указанный электронный трансформатор для ламп производится с выходным переходником. Расширитель у модели имеется дипольного типа. Всего в устройстве установлены три конденсатора. Резистор применяется для решения проблем с отрицательной полярностью. Конденсаторы у модели перегреваются редко. Непосредственно модулятор подсоединяется через резистор. Всего у модели установлены два тиристора. В первую очередь они отвечают за параметр выходного напряжения. Также тиристоры призваны обеспечивать стабильную работу расширителя.

Трансформатор GET 03

Трансформатор (12 Вольт) указанной серии пользуется большой популярность. Всего у модели имеются два резистора. Находятся они рядом с модулятором. Если говорить про показатели, то важно отметить, что частота модификации равняется 55 Гц. Подключение устройства осуществляется через выходной переходник.

Расширитель подобран с изолятором. С целью решения проблем с отрицательной полярностью используются два конденсатора. Регулятор в представленной модификации отсутствует. Показатель проводимости трансформатора составляет 4,5 мк. Выходное напряжение колеблется в районе 12 В.

Устройство ELTR-70

Указанный электронный трансформатор 12В включает в себя два проходных тиристора. Отличительной особенностью модификации считается высокая тактовая частота. Таким образом, процесс преобразования тока осуществятся без скачков напряжения. Расширитель у модели используется без обкладки.

Для понижения чувствительности имеется триггер. Установлен он стандартно селективного типа. Показатель отрицательного сопротивления составляет 40 Ом. Для однофазной модификации это считается нормальным. Также важно отметить, что устройства подключаются через выходной переходник.

Модель ELTR-60

Это трансформатор выделяет высокой стабильностью напряжения. Относится модель к однофазным устройствам. Конденсатор у него используется с высокой проводимостью. Проблемы с отрицательной полярностью решаются за счет расширителя. Он установлен за модулятором. Регулятор в представленном трансформаторе отсутствует. Всего у модели используются два резистора. Емкость у них составляет 4,5 пФ. Если верить специалистам, то перегрев элементов наблюдается очень редко. Выходное напряжение на реле равно строго 12 В.

Трансформаторы TRA110

Указанные трансформаторы работают от проходного реле. Расширители у модели используются разной емкости. В среднем показатель выходного сопротивления трансформатора составляет 40 Ом. Относится модель к двухфазным модификациям. Показатель пороговой частоты у нее равен 55 Гц. В данном случае резисторы используются дипольного типа. Всего у модели имеются два конденсатора. Для стабилизации частоты во время работы устройства действует модулятор. Проводники у модели припаяны с высокой проводимостью.

Для сборки самодельных мощных источников питания можно использовать электронные трансформаторы, применяемые для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой автогенераторный импульсный преобразователь напряжения. Стоят такие импульсные трансформаторы достаточно дёшево, и после небольшой доработки их можно использовать для питания своих самодельных устройств требующих мощного источника питания.
При небольших размерах они обеспечивают большую выходную мощность, но у них есть определённые недостатки, такие как: нежелание запуститься без нагрузки, выход из строя при коротком замыкании, и очень сильный уровень помех.

Классическая схема электронного трансформатора на примере Taschibra
, но это может быть и любой другой электронный трансформатор, к примеру ZORN New, приведена ниже.

Напряжение сети поступает на диодный мост. Выпрямленное напряжение питает полумостовой преобразователь на транзисторах. В диагональ моста, образованного этими транзисторами и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя обеспечивается цепью, состоящей из резисторов R3, конденсатора С3, диода D5 и диака D6. Трансформатор обратной связи Т1 имеет три обмотки - обмотка обратной связи по току, которая включена последовательно с первичной обмоткой силового трансформатора (то есть чем больше ток нагрузки - тем больше ток базы ключей, поэтому трансформатор не запускается без нагрузки, или при малой нагрузке напряжение меньше 12В, да и при коротком замыкании базовый ток ключей растет и они выходят из строя, а часто еще и резисторы в базовых цепях), и две обмотки по 3 витка, питающие базовые цепи транзисторов. Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой 40 кГц, промодулированные частотой 100 Гц.

Внешний вид платы ZORN New 150 и обратная сторона


Первая проблема отсутствия запуска без нагрузки или при малой нагрузке устраняется довольно просто - меняем ОС (обратную связь) по току на ОС по напряжению. Удаляем обмотку ОС по току на коммутирующем трансформаторе и ставим вместо нее перемычку. Далее наматываем 1-2 витка на силовом трансформаторе и 1 на коммутирующем, используем резистор в ОС от 3-10 Ом мощностью не меньше 3 - 5 ватт, чем выше сопротивление - тем меньше ток защиты от КЗ. Этим токоограничивающим резистором устанавливается частота преобразования. При увеличении тока нагрузки частота становится больше. Если преобразователь не запустится необходимо изменить направление намотки.

Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного напряжения. Емкость выбирается из расчета 1 - 1,5 мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не менее 400В. При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт.

Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора. Самое простое, это посчитать количество витков вторичной обмотки на силовом трансформаторе, к примеру в электронном трансформаторе ZORN New 150 - 8 витков вторичной обмотки при выходном напряжении 11,8 вольт, соответственно получаем 1,47 вольт/виток. Необходимо также учитывать что, под нагрузкой напряжение упадет, примерно на 2 вольта. Диаметр провода выбирается исходя из тока нагрузки. Таким образом можно получить широкий спектр выходных напряжений от единиц до нескольких сотен вольт. Также можно намотать несколько обмоток для получения нескольких напряжений с одного блока питания, естественно при этом нужно учитывать суммарную мощность электронного трансформатора.

Для выпрямления переменного напряжения на выходе электронного трансформатора устанавливаем диодный мост. Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще. Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует дроссель L1. Совместно с конденсатором он также выполняет функцию фильтрации выпрямленного напряжения. Емкость выходного конденсатора желательно подобрать из расчёта не менее 10 мкф на 1 ватт потребляемой нагрузки. Параллельно желательно поставить конденсатор емкостью 0.1 мкф.

Схема электронного трансформатора с переделками.

В нём применяются транзисторы . Даташит на него

Динистор И немного о динисторе.

DB3 - популярный зарубежный двусторонний динистор - диак. Выполнен в стеклянном цилиндрическом корпусе с гибкими проволочными выводами.

Наибольшее распространение прибор DB3 нашел в схемах сетевых регуляторов мощности нагрузки (диммеров).

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Поскольку DB3 является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики:

  • (I откр — 0.2 А), В 5 - это напряжение при открытом состоянии;
  • Среднее максимально допустимое значение при открытом состоянии: А 0.3;
  • В открытом состоянии импульсный ток составляет А 2;
  • Максимальное напряжение (во время закрытого состояния): В 32;
  • Ток в закрытом состоянии: мкА — 10;
  • Максимальное импульсное не отпирающее напряжение составляет В 5.
  • Диапазон рабочих температур: C -40…70

Как запитать аккумуляторный шуроповерт от электрической сети?

Аккумуляторный шуроповерт предназначен для наворачивания - отворачивания винтов, саморезов, шурупов и болтов. Все зависит от применения сменных головок – битов. Область применения шуроповерта также очень широка: им пользуются сборщики мебели, электромонтажники, строительные рабочие – отделочники закрепляют с его помощью плиты гипсокартона и вообще все, что можно собрать с помощью резьбового соединения.

Это применение шуроповерта в профессиональных условиях. Кроме профессионалов этот инструмент приобретается также исключительно для личного использования при проведении ремонтно-строительных работ в квартире или загородном доме, гараже.

Аккумуляторный шуроповерт имеет малый вес, небольшие размеры, не требует подключения к сети, что позволяет работать с ним в любых условиях. Но вся беда в том, что емкость аккумуляторов невелика, и минут через 30 - 40 интенсивной работы приходится ставить аккумулятор на зарядку не менее, чем на 3 - 4 часа.

Кроме этого аккумуляторы имеют свойство приходить в негодность, особенно когда пользуются шуруповертом не регулярно: повесили ковер, гардины, картины и положили его в коробку. Через год решили привернуть пластиковый плинтус, а шуруповерт не «тянет», зарядка аккумулятора помогает мало.

Новый аккумулятор стоит дорого, да и не всегда в продаже можно сразу найти именно то, что надо. И в том и в другом случае выход один, - питать шуруповерт от сети через блок питания. Тем более, что чаще всего работы проводятся в двух шагах от сетевой розетки. Конструкция такого блока питания будет описана ниже.

В целом конструкция несложна, не содержит дефицитных деталей, повторить ее может любой, кто хоть немножко знаком с электрическими схемами и умеет держать в руках паяльник. Если вспомнить, сколько шуруповертов находится в эксплуатации, то можно предположить, что конструкция будет пользоваться популярностью и спросом.

Блок питания должен удовлетворять сразу нескольким требованиям. Во- первых достаточно надежным, во-вторых малогабаритным и легким и удобным для переноски и транспортировки. Третье требование, пожалуй, самое главное это падающая нагрузочная характеристика, позволяющая избежать повреждения шуроповерта в время перегрузок. Немаловажное значение имеет также простота конструкции и доступность деталей. Всем этим требованиям вполне отвечает блок питания, конструкция которого будет рассмотрена ниже.

Основой устройства является электронный трансформатор марки Feron или Toshibra мощностью 60 ватт. Такие трансформаторы продаются в магазинах электротоваров и предназначены для питания галогенных ламп с напряжением 12 В. Обычно такими лампами подсвечивают витрины в магазинах.

В данной конструкции сам по себе трансформатор не требует никаких переделок, применяется как есть: два входных сетевых провода и два выходных с напряжением 12 В. Принципиальная схема блока питания достаточно проста и показана на рисунке 1.

Рисунок 1. Принципиальная схема блока питания

Трансформатор Т1 создает падающую характеристику блока питания за счет повышенной индуктивности рассеяния, что достигается его конструкцией, о которой будет сказано выше. Кроме того трансформатор Т1 обеспечивает дополнительную гальваническую развязку от сети, что повышает в целом электробезопасность устройства, хотя эта развязка есть уже в самом электронном трансформаторе U1. Подбором числа витков первичной обмотки можно в некоторых пределах регулировать выходное напряжение блока в целом, что позволяет использовать его с разными типами шуруповертов.

Вторичная обмотка трансформатора Т1 выполнена с отводом от средней точки, что позволяет вместо диодного моста применить двухполупериодный выпрямитель всего на двух диодах. По сравнению с мостовой схемой, потери такого выпрямителя, за счет падения напряжения на диодах, в два раза ниже. Ведь диодов-то два, а не четыре. С целью еще большего снижения потерь мощности на диодах в выпрямителе применена диодная сборка с диодами Шоттки.

Низкочастотные пульсации выпрямленного напряжения сглаживает электролитический конденсатор С1. Электронные трансформаторы работают на высокой частоте, порядка 40 - 50 КГц, поэтому, кроме пульсаций с частотой сети, в выходном напряжении присутствуют и эти высокочастотные пульсации. Учитывая то, что двухполупериодный выпрямитель увеличивает частоту в 2 раза, эти пульсации достигают 100 и более килогерц.

Оксидные конденсаторы имеют большую внутреннюю индуктивность, поэтому высокочастотные пульсации сгладить не могут. Более того, они просто будут бесполезно разогревать электролитический конденсатор, и даже могут привести его в негодность. Для подавления этих пульсаций параллельно оксидному конденсатору установлен керамический конденсатор С2, небольшой емкости и с маленькой собственной индуктивностью.

Индикацию работы блока питания можно проконтролировать по свечению светодиода HL1, ток через который ограничивается резистором R1.

Отдельно следует сказать о назначении резисторов R2 - R7. Дело в том, что электронный трансформатор изначально предназначен для питания галогенных ламп. Предполагается, что эти лампы подключены к выходной обмотке электронного трансформатора еще до того, как он будет включен в сеть: иначе без нагрузки он просто не запускается.

Если в описываемой конструкции включить электронный трансформатор в сеть, то последующее нажатие кнопки шуруповерта вращаться его не заставит. Чтобы такого не произошло в конструкции и предусмотрены резисторы R2 - R7. Их сопротивление выбрано таким, чтобы электронный трансформатор уверенно запустился.

Детали и конструкция

Блок питания размещен в корпусе отслужившего свой срок штатного аккумулятора, если его, конечно, еще не выбросили. Основой конструкции служит алюминиевая пластина толщиной не менее 3 мм, размещенная посредине корпуса аккумулятора. В целом конструкция показана на рисунке 2.

Рисунок 2. Блок питания для аккумуляторного шуруповерта

К этой пластине крепятся все остальные детали: электронный трансформатор U1, трансформатор Т1 (с одной стороны), а диодная сборка VD1 и все остальные детали, в том числе и кнопка включения питания SB1, с другой. Пластина служит также общим проводом выходного напряжения, поэтому диодная сборка устанавливается на нее без прокладки, хотя для лучшего охлаждения теплоотводящую поверхность сборки VD1 следует смазать теплоотводящей пастой КПТ-8.

Трансформатор Т1 выполнен на ферритовом кольце типоразмера 28*16*9 из феррита марки НМ2000. Такое кольцо не дефицитно, достаточно распространенно, проблем с приобретением возникнуть не должно. Перед намоткой трансформатора сначала с помощью алмазного надфиля или просто наждачной бумаги следует притупить наружные и внутренние кромки кольца, после чего заизолировать его лентой из лакоткани или ФУМ-лентой, применяемой для подмотки труб отопления.

Как было сказано выше, трансформатор должен иметь большую индуктивность рассеяния. Это достигается тем, что обмотки расположены напротив друг друга, а не одна под другой. Первичная обмотка I содержит 16 витков в два провода марки ПЭЛ или ПЭВ-2. Диаметр провода 0,8 мм.

Вторичная обмотка II намотана жгутом из четырех проводов, количество витков 12, диаметр провода тот же, что и для первичной обмотки. Чтобы обеспечить симметрию вторичной обмотки, ее следует мотать сразу в два провода, точнее жгута. После намотки, как это делается обычно, начало одной обмотки соединяют с концом другой. Для этого обмотки придется «прозвонить» тестером.

В качестве кнопки SB1 используется микропереключатель МП3-1, у которого задействуется нормально замкнутый контакт. В днище корпуса блока питания установлен толкатель, который через пружину связан с кнопкой. Блок питания подключается к шуруповерту, в точности так же, как штатный аккумулятор.

Если теперь шуроповерт поставить на ровную поверхность, толкатель через пружину нажимает на кнопку SB1 и блок питания отключается. Как только шуруповерт будет взят в руки, освобожденная кнопка включит блок питания. Остается только нажать на курок шуроповерта и все заработает.

Немного о деталях

Деталей в блоке питания немного. Конденсаторы лучше применить импортные, это теперь даже проще, чем найти детали отечественного производства. Диодную сборку VD1 типа SBL2040CT (выпрямленный ток 20 А, обратное напряжение 40 В) можно заменить на SBL3040CT, в крайнем случае двумя отечественными диодами КД2997. Но указанные на схеме диоды дефицитом не являются, поскольку применяются в компьютерных блоках питания, и купить их не проблема.

О конструкции трансформатора Т1 было сказано выше. В качестве светодиода HL1 подойдет любой, какой есть под руками.

Налаживание устройства несложно и сводится лишь к отматыванию витков первичной обмотки трансформатора Т1 для достижения нужного выходного напряжения. Номинальное напряжение питания шуроповертов, в зависимости от модели, составляет 9, 12 и 19 В. Отматывая витки с трансформатора Т1 следует добиться, соответственно, 11, 14 и 20 В.

Внешне электронный трансформатор представляет собой небольшой металлический, как правило, алюминиевый корпус, половинки которого скреплены всего двумя заклепками. Впрочем, некоторые фирмы выпускают подобные устройства и в пластиковых корпусах.

Чтобы посмотреть, что же там внутри, эти заклепки можно просто высверлить. Такую же операцию предстоит проделать, если намечается переделка или ремонт самого устройства. Хотя при его низкой цене куда проще пойти и купить другое, чем ремонтировать старое. И все же нашлось немало энтузиастов, которые не только сумели разобраться в устройстве прибора, но и разработать на его основе несколько импульсных блоков питания.

Принципиальная схема к устройству не прилагается, как и ко всем нынешним электронным устройствам. Но схема достаточно проста, содержит малое количество деталей и поэтому принципиальную схему электронного трансформатора можно срисовать с печатной платы.

На рисунке 1 показана снятая подобным образом схема трансформатора фирмы Taschibra. Очень похожую схему имеют преобразователи, выпускаемые фирмой Feron. Отличие лишь в конструкции печатных плат и типах используемых деталей, в основном трансформаторов: в преобразователях Feron выходной трансформатор выполнен на кольце, в то время как в преобразователях Taschibra на Ш-образном сердечнике.

В обоих случаях сердечники выполнены из феррита. Следует сразу отметить, что кольцеобразные трансформаторы при различных доработках прибора лучше поддаются перемотке, чем Ш – образные. Поэтому, если электронный трансформатор приобретается для опытов и переделок, лучше купить прибор фирмы Feron.

При использовании электронного трансформатора лишь для питания галогенных ламп название фирмы – изготовителя значения не имеет. Единственное, на что следует обратить внимание, это на мощность: электронные трансформаторы выпускаются мощностью 60 - 250 Вт.

Рисунок 1. Схема электронного трансформатора фирмы Taschibra

Краткое описание схемы электронного трансформатора, ее достоинства и недостатки

Как видно из рисунка, устройство представляет собой двухтактный автогенератор, выполненный по полумостовой схеме. Два плеча моста выполнены на транзисторах Q1 и Q2, а два других плеча содержат конденсаторы C1 и C2, поэтому такой мост называется полумостом.

В одну из его диагоналей подается сетевое напряжение, выпрямленное диодным мостом, а в другую включена нагрузка. В данном случае это первичная обмотка выходного трансформатора. По очень похожей схеме выполнены электронные балласты для энергосберегающих ламп, но в них вместо трансформатора включен дроссель, конденсаторы и нити накала люминесцентных ламп.

Для управления работой транзисторов в их базовые цепи включены обмотки I и II трансформатора обратной связи Т1. Обмотка III это обратная связь по току, через нее подключена первичная обмотка выходного трансформатора.

Управляющий трансформатор Т1 намотан на ферритовом кольце с внешним диаметром 8 мм. Базовые обмотки I и II содержат по 3..4 витка, а обмотка обратной связи III – всего один виток. Все три обмотки выполнены проводами в разноцветной пластиковой изоляции, что немаловажно при экспериментах с устройством.

На элементах R2, R3, C4, D5, D6 собрана цепь запуска автогенератора в момент включения всего устройства в сеть. Выпрямленное входным диодным мостом напряжение сети через резистор R2 заряжает конденсатор C4. Когда напряжение на нем превысит порог срабатывания динистора D6, последний открывается и на базе транзистора Q2 формируется импульс тока, который запускает преобразователь.

Дальнейшая работа осуществляется без участия цепи запуска. Следует заметить, что динистор D6 двухсторонний, может работать в цепях переменного тока, в случае постоянного тока полярность включения значения не имеет. В интернете его также называют «диак».

Сетевой выпрямитель выполнен на четырех диодах типа 1N4007, резистор R1 с сопротивлением 1Ом и мощностью 0, 125Вт используется в качестве предохранителя.

Схема преобразователя в том виде, как она есть, достаточно проста и не содержит никаких «излишеств». После выпрямительного моста не предусмотрено даже просто конденсатора для сглаживания пульсаций выпрямленного сетевого напряжения.

Выходное напряжение прямо с выходной обмотки трансформатора также безо всяких фильтров подается прямо на нагрузку. Отсутствуют цепи стабилизации выходного напряжения и защиты, поэтому при коротком замыкании в цепи нагрузки сгорают сразу несколько элементов, как правило, это транзисторы Q1, Q2, резисторы R4, R5, R1. Ну, может и не все сразу, но хотя бы один транзистор точно.

И несмотря на такое, казалось бы, несовершенство схема себя вполне оправдывает при использовании его в штатном режиме, т.е. для питания галогенных ламп. Простота схемы обуславливает ее дешевизну и широкую распространенность устройства в целом.

Исследование работы электронных трансформаторов

Если к электронному трансформатору подключить нагрузку, например, галогенную лампу 12В х 50Вт, а к этой нагрузке подключить осциллограф, то на его экране можно будет увидеть картинку, показанную на рисунке 2.

Рисунок 2. Осциллограмма выходного напряжения электронного трансформатора Taschibra 12Vх50W

Выходное напряжение представляет собой высокочастотные колебания частотой 40КГц, модулированные на 100% частотой 100ГЦ, полученной после выпрямления сетевого напряжения частотой 50ГЦ, что вполне подходит для питания галогенных ламп. В точности такая же картинка будет получена для преобразователей другой мощности или другой фирмы, ведь схемы практически не отличаются друг от друга.

Если к выходу выпрямительного моста подключить электролитический конденсатор C4 47uFх400V, как показано пунктирной линией на рисунке 4, то напряжение на нагрузке примет вид, показанный на рисунке 4.

Рисунок 3. Подключение конденсатора к выходу выпрямительного моста

Однако, не следует забывать о том, что ток зарядки дополнительно подключенного конденсатора C4 приведет к перегоранию, причем достаточно шумному, резистора R1, который используется в качестве предохранителя. Поэтому этот резистор следует заменить более мощным резистором с номиналами 22Омх2Вт, назначение которого просто ограничить ток зарядки конденсатора С4. В качестве же предохранителя следует использовать обычный плавкий предохранитель на 0,5А.

Нетрудно заметить, что модуляция с частотой 100Гц прекратилась, остались лишь высокочастотные колебания с частотой около 40КГц. Даже если при этом исследовании и нет возможности воспользоваться осциллографом, то этот неоспоримый факт можно заметить по некоторому увеличению яркости лампочки.

Это говорит о том, что электронный трансформатор вполне пригоден для создания несложных импульсных блоков питания. Тут возможно несколько вариантов: использование преобразователя без разборки, только за счет добавления наружных элементов и с небольшими изменениями схемы, совсем небольшими, но придающими преобразователю совсем иные свойства. Но об этом более подробно мы поговорим в следующей статье.

Как сделать блок питания из электронного трансформатора?

После всего сказанного в предыдущей статье (смотрите Как устроен электронный трансформатор? ), кажется, что сделать импульсный блок питания из электронного трансформатора достаточно просто: поставить на выход выпрямительный мост, сглаживающий конденсатор, при необходимости стабилизатор напряжения и подключить нагрузку. Однако это не совсем так.

Дело в том, что преобразователь не запускается без нагрузки или нагрузка не достаточна: если к выходу выпрямителя подключить светодиод, разумеется, с ограничительным резистором, то удастся увидеть, лишь только одну вспышку светодиода при включении.

Чтобы увидеть еще одну вспышку, потребуется выключить и включить преобразователь в сеть. Чтобы вспышка превратилась в постоянное свечение надо подключить к выпрямителю дополнительную нагрузку, которая будет просто отбирать полезную мощность, превращая ее в тепло. Поэтому такая схема применяется в том случае, когда нагрузка постоянна, например, двигатель постоянного тока или электромагнит, управление которыми будет возможно только по первичной цепи.

Если для нагрузки необходимо напряжение более, чем 12В, которое выдают электронные трансформаторы потребуется перемотка выходного трансформатора, хотя есть и менее трудоемкий вариант.

Вариант изготовления импульсного блока питания без разборки электронного трансформатора

Схема такого блока питания показана на рисунке 1.

Рисунок 1. Двухполярный блок питания для усилителя

Блок питания изготовлен на основе электронного трансформатора мощностью 105Вт. Для изготовления такого блока питания понадобится изготовить несколько дополнительных элементов: сетевой фильтр, согласующий трансформатор Т1, выходной дроссель L2, выпрямительный мост VD1-VD4.

Блок питания в течение нескольких лет эксплуатируется с УНЧ мощностью 2х20Вт без нареканий. При номинальном напряжении сети 220В и токе нагрузки 0,1А выходное напряжение блока 2х25В, а при увеличении тока до 2А напряжение падает до 2х20В, что вполне достаточно для нормальной работы усилителя.

Согласующий трансформатор Т1 выполнен на кольце К30х18х7 из феррита марки М2000НМ. Первичная обмотка содержит 10 витков провода ПЭВ-2 диаметром 0,8мм, сложенного вдвое и свитого жгутом. Вторичная обмотка содержит 2х22 витка со средней точкой, тем же проводом, также сложенным вдвое. Чтобы обмотка получилась симметричной, мотать следует сразу в два провода – жгута. После обмотки для получения средней точки соединить начало одной обмотки с концом другой.

Также самостоятельно придется изготовить дроссель L2 для его изготовления понадобится такое же ферритовое кольцо, как и для трансформатора Т1. Обе обмотки намотаны проводом ПЭВ-2 диаметром 0,8мм и содержат по 10 витков.

Выпрямительный мост собран на диодах КД213, можно применить также КД2997 или импортные, важно лишь, чтобы диоды были рассчитаны на рабочую частоту не менее 100КГц. Если вместо них поставить, например, КД242, то они будут только греться, а требуемого напряжения получить от них не удастся. Диоды следует установить на радиатор площадью не менее 60 - 70см2, используя при этом изолирующие слюдяные прокладки.

Электролитические конденсаторы C4, C5 составлены из трех параллельно соединенных конденсаторов емкостью по 2200 микрофарад каждый. Обычно так делается во всех импульсных источниках питания для того, чтобы снизить общую индуктивность электролитических конденсаторов. Кроме этого полезно также параллельно им установить керамические конденсаторы емкостью 0.33 - 0,5мкФ, которые будут сглаживать высокочастотные колебания.

На входе блока питания полезно установить входной сетевой фильтр, хотя будет работать и без него. В качестве дросселя входного фильтра использован готовый дроссель ДФ50ГЦ, применявшийся в телевизорах 3УСЦТ.

Все узлы блока монтируют на плате из изоляционного материала навесным монтажом, используя для этого выводы деталей. Всю конструкцию следует поместить в экранирующий корпус из латуни или жести, предусмотрев в нем отверстия для охлаждения.

Правильно собранный источник питания в наладке не нуждается, начинает работать сразу. Хотя, прежде чем ставить блок в готовую конструкцию следует его проверить. Для этого на выход блока подключается нагрузка – резисторы сопротивлением 240Ом, мощностью не менее 5Вт. Включать блок без нагрузки не рекомендуется.

Еще один способ доработки электронного трансформатора

Случаются ситуации, что хочется применить подобный импульсный блок питания, но нагрузка оказывается очень «вредной». Потребление тока либо очень мало, либо меняется в широких пределах, и блок питания не запускается.

Подобная ситуация возникла, когда попытались в светильник или люстру со встроенными электронными трансформаторами, вместо галогенных ламп поставить светодиодные . Люстра просто отказалась с ними работать. Что же делать в таком случае, как заставить все это работать?

Чтобы разобраться с этим вопросом давайте, посмотрим на рисунок 2, на котором показана упрощенная схема электронного трансформатора.

Рисунок 2. Упрощенная схема электронного трансформатора

Обратим внимание на обмотку управляющего трансформатора Т1, подчеркнутую красной полосой. Эта обмотка обеспечивает обратную связь по току: если тока через нагрузку нет, или он просто мал, то трансформатор просто не заводится. Некоторые граждане, купившие это устройство, подключают к нему лампочку мощностью 2,5Вт, а потом несут обратно в магазин, мол, не работает.

И все же достаточно простым способом можно не только заставить работать устройство практически без нагрузки, да еще и сделать в нем защиту от короткого замыкания. Способ подобной доработки показан на рисунке 3.

Рисунок 3. Доработка электронного трансформатора. Упрощенная схема.

Для того, чтобы электронный трансформатор мог работать без нагрузки или с минимальной нагрузкой следует обратную связь по току заменить обратной связью по напряжению. Для этого следует убрать обмотку обратной связи по току (подчеркнутую красным на рисунке 2), а вместо нее запаять в плату проволочную перемычку, естественно, помимо ферритового кольца.

Далее на управляющий трансформатор Тр1, это тот, который на маленьком кольце, наматывается обмотка из 2 - 3 витков. А на выходной трансформатор один виток, и далее получившиеся дополнительные обмотки соединяется, как указано на схеме. Если преобразователь не заведется, то надо поменять фазировку одной из обмоток.

Резистор в цепи обратной связи подбирается в пределах 3 - 10Ом, мощностью не менее 1Вт. Он определяет глубину обратной связи, которая определяет ток, при котором произойдет срыв генерации. Собственно это и есть ток срабатывания защиты от КЗ. Чем больше сопротивление этого резистора, тем при меньшем токе нагрузки будет происходить срыв генерации, т.е. срабатывание защиты от КЗ.

Из всех приведенных доработок, эта, пожалуй, самая лучшая. Но это не помешает дополнить ее еще одним трансформатором как в схеме по рисунку 1.

Электронные трансформаторы: назначение и типовое использование

Применение электронного трансформатора

Для того чтобы улучшить условия электробезопасности систем освещения в некоторых случаях рекомендуется использование ламп не на напряжение 220В, а значительно ниже. Как правило, такое освещение устраивается во влажных помещениях: подвалах, погребах, ванных комнатах.

Для этих целей в настоящее время применяются в основном галогенные лампы с рабочим напряжением 12В. Питание таких ламп осуществляется через электронные трансформаторы , о внутреннем устройстве которых будет рассказано несколько позже. А пока несколько слов о штатном использовании этих устройств.

Внешне электронный трансформатор представляет собой небольшую металлическую или пластмассовую коробочку, из которой выходят 4 провода: два входных с надписью ~220В, и два выходных ~12В.

Все достаточно просто и понятно. Электронные трансформаторы допускают регулирование яркости с помощью диммеров (тиристорных регуляторов) конечно же со стороны входного напряжения. К одному диммеру допускается подключение сразу нескольких электронных трансформаторов. Естественно, возможно и включение без регуляторов. Типовая схема включения электронного трансформатора показана на рисунке 1.

Рисунок 1. Типовая схема включения электронного трансформатора.

К достоинствам электронных трансформаторов, прежде всего, следует отнести их малые габариты и вес, что позволяет устанавливать их практически где угодно. Некоторые модели современных осветительных приборов, рассчитанные на работу с галогенными лампами, содержат встроенные электронные трансформаторы, иногда даже по несколько штук. Такая схема применяется, например, в люстрах. Известны варианты, когда электронные трансформаторы устанавливаются в мебели для устройства внутренней подсветки полок и вешалок.

Для устройства освещения помещений трансформаторы могут устанавливаться за подвесным потолком или за гипсокартонными плитами стенных покрытий в непосредственной близости от галогенных ламп. При этом длина соединительных проводов между трансформатором и лампой не более 0,5 - 1 метра, что обусловлено большими токами (при напряжении 12В и мощности 60Вт ток в нагрузке не менее 5А), а также высокочастотной составляющей выходного напряжения электронного трансформатора.

Индуктивное сопротивление провода увеличивается с увеличением частоты, а также его длины. В основном длина и определяет индуктивность провода. При этом общая мощность подключенных ламп, не должна превышать указанную на этикетке электронного трансформатора. Для повышения надежности всей системы в целом лучше, если мощность ламп будет, ниже на 10 - 15% мощности трансформатора.

Рис. 2. Электронный трансформатор для галогенных ламп фирмы OSRAM

Вот, пожалуй, и все, что можно сказать о типовом использовании этого устройства. Есть одно условие, о котором не следует забывать: электронные трансформаторы не запускаются без нагрузки . Поэтому лампочка должна быть подключена постоянно, а включение освещения производится выключателем, установленным в первичной сети.

Но на этом область применения электронных трансформаторов не ограничивается: несложные доработки, часто не требующие даже вскрытия корпуса, позволяют на базе электронного трансформатора создавать импульсные блоки питания (ИБП). Но прежде, чем говорить об этом, следует познакомиться с устройством собственно трансформатора поближе.

В следующей статье мы более подробно познакомимся с одним из электронных трансформаторов фирмы Taschibra, а также проведем небольшое исследование работы трансформатора.

Трансформаторы для галогеновых ламп

Точечные встраиваемые светильники сегодня стали такой же обыденно нормальной вещью в интерьере дома, квартиры, офиса как и обыкновенная люстра или люминесцентный светильник.

Многие наверняка обращали внимание на то, что иногда лампочки, если их несколько, в этих самых светильника точечных светятся по разному. Некоторые лампы светят довольно ярко, другие же горят, в лучшем случае, в половину накала. В этой статье мы попробуем разобраться с сутью проблемы.

Итак, для начала немного теории. Галогеновые лампочки устанавливаемые в точечные встраиваемые светильник рассчитана на рабочее напряжение 220 В и 12 В. Для того, чтобы подключить лампочки рассчитанные на напряжение 12 В, необходимо специальное устройство- трансформатор.

Трансформаторы для галогеновых ламп, представленные на нашем рынке, в большинстве своем – электронные. Также есть тороидальные трансформаторы, но в данной статье мы на них особо останавливаться не будем. Отметим лишь, что они более надежны чем электронные, но при условии, что у Вас относительно стабильное напряжение, и правильно подобрана сбалансирована мощность трансформатор-лампа.

Электронный трансформатор для галогенных ламп обладает рядом преимуществ по сравнению с обыкновенным трансформатором. К этим преимуществам можно отнести: плавный пуск (не у всех трансов он есть), защиту от короткого замыкания (также не у всех), малый вес, малые размеры, постоянное напряжение на выходе (у большинства), автоматическая регулировка выходного напряжения. Но все это будет правильно работать лишь при грамотном монтаже.

Так уж получилось, что многие электрики-самоучки или люди, которые занимается прокладывание проводов, мало читают книжек по электротехнике и уж тем более инструкции, которые прилагаются практически ко всем устройствам, в данном случае понижающим трансформаторам. В этой самой инструкции черным по белому написано, что:

1) длина провода от трансформатора к лампе должна быть не более 1.5 метров, при условии, что сечение провода не менее 1 мм кв.

2) если требуется к одному трансформатору подключить 2 и более ламп, подключение осуществляется по схеме «звезда»;

3) если нужно увеличить длину провода от трансформатора к светильнику, то необходимо пропорционально длине увеличивать и сечение провода;

Соблюдение столь несложных правил избавит Вас от многих вопросов и проблем, возникающих в процессе монтажа освещения.

Не особо вдаваясь в законы физики, рассмотрим каждый из пунктов.

1) Если Вы увеличите длину проводам - лампа будет светить более тускло, а провод может начать греться.

2) Что такое схема «звезда»? Это значит, что к каждой лампе следует провести отдельный провод и, что немаловажно, длина всех проводов должна быть одной длины, независимо от расстояния трансформатор->лампа, иначе свечение всех лампочек будет разным.

4) Каждый трансформатор для галогенных ламп рассчитан на определенную мощность. Нет необходимости брать трансформатор мощностью 300 Вт и запитать на него лампочку мощностью в 20 Вт.

Во-первых- бессмысленно и во - вторых не будет согласования трансформатор-> лампа, и что нибудь из этой цепочки обязательно сгорит. Дело только во времени.

К примеру, для трансформатора мощностью 105 Вт, можно использовать 3 лампы по 35 Вт, 5 по 20Вт, но это при условии применения качественных трансформаторов.

Надежность трансформатора во многом зависит от производителя. Большинство электрооборудования представленного у нас на рынке производится, сами знаете где, в Китае. Цена, как правило, соответствует качеству. При выборе трансформатора внимательно ознакомьтесь с инструкцией (при наличии таковой), или с тем, что написано на коробочке или самом трансформаторе.

Как правило, производитель пишет максимальную мощность, на которую способен этот прибор. На практике же, от этой цифры необходимо отнять порядка 30 %, тогда есть шанс, что трансформатор прослужит какое-то время.

В случае если вся проводка уже проведена и нет возможности переделать проводку по схеме «звезда», оптимальным вариантом будет, если каждую лампочку запитать отдельным, своим трансформатором. Поначалу это обойдется немного дороже, чем один транс на 3-4 лампы, но в дальнейшем, в процессе эксплуатации, Вы поймете преимущества данной схемы.

В чем же преимущество? Если выйдет из строя один трансформатор, не будет светить всего лишь одна лампочка, что, согласитесь, достаточно удобно, ведь основное освещение по прежнему остается в работе.

Если вам необходимо регулировать силу света, то есть, использовать диммер, от электронного трансформатора придется отказаться, так как большинство электронных трансформаторов не рассчитаны на работу с диммером. В данном случае можно применить тороидальный понижающий трансформатор.

Если это кажется Вам немного накладно, на каждую лампочку «вешать» отдельный трансформатор, вместо лампочек рассчитанных на 12 В, установите лампы на 220 В, снабдив их при это устройством плавного пуска, или, если позволяет конструкция светильников, поменяйте лампы на другие, к примеру эконом-лампы MR-16 светодиодные. Более подробно мы описывали это в предыдущей статье.

Выбирая трансформатор для галогеновых лампочек, остановите свой выбор на качественных, более дорогих трансформаторах. Такие трансформаторы оснащены множеством защит: от короткого замыкания, от перегрева, снабжены устройством плавного пуска ламп, что существенно, в 2-3 раза продлевает срок службы лампочек. И, кроме того, качественные трансформаторы проходят множество проверок на безопасность эксплуатации, на пожаробезопасность, на соответствие евростандартам, чего нельзя сказать о более дешевых моделях, которые, в большинстве своем, появляются у нас неизвестно откуда.

В любом случае, все достаточно сложные технические вопросы, к которым можно отнести и выбор трансформаторов для галогеновых ламп, лучше доверить профессионалам.

Устройство плавного включения ламп накаливания

Принцип работы данного устройства и плюсы при его использовании.

Как известно, лампы накаливания и так называемыегалогеновые лампы очень часто выходят из строя. Зачастую это связано с не стабильным напряжением сети и очень частым включением ламп. Даже если используются лампы пониженного напряжения (12 вольт) через понижающий трансформатор, все равно частое включение ламп приводит к их быстрому сгоранию. Для более длительного срока службы ламп накаливания было придумано устройство плавного включения ламп.

Устройство для плавного пуска ламп накаливания производит розжиг спирали лампы более медленно (2-3 секунды), за счет этого исключается возможность выхода из строя лампы в момент накала нити.

Как известно в большинстве случаев лампы накаливания выходят из строя в момент включения, исключив этот момент, мы значительно продлим срок службы ламп накаливания.

Нужно учесть и то, что при прохождении через устройство плавного включения ламп напряжение сети стабилизируется, и на лампу не воздействуют резкие скачки напряжения.

Устройства плавного пуска ламп можно использовать как с лампами на напряжение 220 вольт, так и с лампами, работающими через понижающий трансформатор. И в том и в другом случае устройство плавного включения ламп устанавливается в разрыв цепи (фазы).

Необходимо запомнить, что при использовании устройства совместно с понижающим трансформатором , его необходимо установить до трансформатора.

Устанавливать устройство плавного включения ламп можно в любом доступном месте, будь то соединительная коробка, соединитель люстры, выключатель, или встраиваемый светильник.

Не рекомендуется устанавливать в помещениях с повышенной влажностью. Каждое отдельное устройство должно подбирается в зависимости от нагрузки, которую оно будет поддерживать, нельзя устанавливать устройтсво плавного включения ламп с установленной мощностью меньшей, чем у всех ламп, которые оно защищает. Использовать устройство плавного включения ламп с люминесцентными лампами нельзя.

Установив устройство плавного включения ламп, Вы надолго забудете о проблеме замены галогеновых ламп и ламп накаливания.

Многие начинающие радиолюбители, и не только, сталкиваются с проблемами при изготовлении мощных

источников питания. Сейчас в продаже появилось большое количество электронных трансформаторов,

используемых для питания галогенных ламп. Электронный трансформатор представляет собой полумостовой

автогенераторный импульсный преобразователь напряжения.
Импульсные преобразователи имеют высокий КПД, малые размеры и вес.
Стоят данные изделия не дорого, примерно 1рубль за один ватт. Их после доработки вполне можно использовать

опытом переделки электронного трансформатора Taschibra 105W.

Рассмотрим принципиальную схему электронного преобразователя.
Напряжение сети через предохранитель поступает на диодный мост D1-D4 . Выпрямленное напряжение питает

полумостовой преобразователь на транзисторах Q1 и Q2. В диагональ моста, образованного этими транзисторами

и конденсаторами С1, С2, включена обмотка I импульсного трансформатора Т2. Запуск преобразователя

обеспечивается цепью, состоящей из резисторов R1, R2, конденсатора С3, диода D5 и диака D6. Трансформатор

обратной связи Т1 имеет три обмотки - обмотка обратной связи по току, которая включена последовательно

с первичной обмоткой силового трансформатора, и две обмотки по 3 витка, питающие базовые цепи транзисторов.
Выходное напряжение электронного трансформатора представляет собой прямоугольные импульсы частотой

30 кГц, промодулированные частотой 100 Гц.


Для того, чтобы использовать электронный трансформатор в качестве источника питания, его необходимо

доработать.

Подключаем на выходе выпрямительного моста конденсатор, для сглаживания пульсаций выпрямленного

напряжения. Емкость выбирается из расчета 1мкФ на 1Вт. Рабочее напряжение конденсатора должно быть не

менее 400В.

При включении в сеть выпрямительного моста с конденсатором возникает бросок тока, поэтому нужно в разрыв

одного из сетевых проводов включить терморезистор NTC или резистор 4,7 Ом 5Вт. Это ограничит пусковой ток.

Если необходимо другое выходное напряжение, перематываем вторичную обмотку силового трансформатора.

Диаметр провода (жгута из проводов) выбирается исходя из тока нагрузки.

Электронные трансформаторы имеют ОС по току, поэтому выходное напряжение будет изменяться в зависимости

от нагрузки. Если нагрузка не подключена, трансформатор не запустится. Для того чтобы этого не было, нужно

изменить схему обратной связи по току на ОС по напряжению.

Обмотку обратной связи по току удаляем и вместо нее на плате ставим перемычку. Затем пропускаем гибкий

многожильный провод через силовой трансформатор и делаем 2 витка, далее пропускаем провод через

трансформатор обратной связи и делаем один виток. Концы, пропущенного через силовой трансформатор

и трансформатор обратной связи провода, соединяем через два параллельно соединенных резистора

6,8 Ом 5 Вт. Этим токоограничивающим резистором устанавливается частота преобразования (примерно 30кГц).

При увеличении тока нагрузки частота становится больше.

Если преобразователь не запустится необходимо изменить направление намотки.

В трансформаторах Taschibra транзисторы прижаты к корпусу через картон, что небезопасно при эксплуатации.

К тому же бумага очень плохо проводит тепло. Поэтому лучше установить транзисторы через теплопроводящую

прокладку.
Для выпрямления переменного напряжения частотой 30кГц на выходе электронного трансформатора

устанавливаем диодный мост.
Наилучшие результаты показали, из всех опробованных диодов, отечественные

КД213Б (200В; 10А; 100кГц; 0,17мкс). При больших токах нагрузки они греются, поэтому их необходимо

установить на радиатор через теплопроводящие прокладки.
Электронные трансформаторы плохо работают с емкостной нагрузкой или не запускаются вообще.

Для нормальной работы необходим плавный запуск устройства. Обеспечению плавного запуска способствует

дроссель L1. Совместно с конденсатором 100мкФ он также выполняет функцию фильтрации выпрямленного

напряжения.
Дроссель L1 50мкГ наматывается на сердечнике Т106-26 фирмы Micrometals и содержит 24 витка проводом 1,2мм.

Такие сердечники (жёлтого цвета, с одной гранью белого цвета) применяются в компьютерных блоках питания.

Внешний диаметр 27мм, внутренний 14мм, и высота 12мм. Кстати, в убитых блоках питания можно найти и

другие детали, в том числе терморезистор.

Если у вас есть шуруповерт или другой инструмент, у которого аккумуляторная батарея выработала свой

ресурс, то в корпусе этой батареи можно поместить блок питания из электронного трансформатора.

В результате у вас получится инструмент, работающий от сети.
Для стабильной работы на выходе блока питания желательно поставить резистор приблизительно 500 Ом 2Вт.

В процессе наладки трансформатора нужно быть предельно внимательным и аккуратным.

На элементах устройства присутствует высокое напряжение. Не касайтесь фланцев транзисторов,

чтобы проверить греются они или нет. Необходимо также помнить, что после выключения конденсаторы

остаются заряженными некоторое время.

Эксперименты с электронным трансформатором "Tashibra"

0 Думаю, что достоинства этого трансформатора оценили уже многие из тех, кто когда-либо занимался проблемами питания различных электронных конструкций. А достоинств у этого электронного трансформатора - не мало. Малый вес и габариты (как и у всех аналогичных схем), простота переделки под собственные нужды, наличие экранирующего корпуса, невысокая стоимость и относительная надежность (по крайней мере, если не допускать экстремальных режимов и КЗ, изделие, выполненное по аналогичной схеме, способно проработать долгие годы). Диапазон применения блоков питания на базе "Tashibra" может быть весьма широким, сопоставимым с применением обычных трансформаторов.
Применение оправдано в случаях дефицита времени, средств, отсутсвия необходимости стабилизации.
Ну, что, - поэксперемтируем? Сразу оговорюсь, что целью экспериментов являлась проверка цепи запуска "Tashibra" при различных нагрузках, частотах и применении различных трансформаторов. Так же хотелось подобрать оптимальные номиналы компонентов цепи ПОС и проверить температурные режимы компонентов схемы при работе на различные нагрузки с учетом использования корпуса "Tashibra" в качестве радиатора.
Несмотря на большое количество опубликованных схем электронного трансформатора, не поленюсь еще раз выложить ее на обозрение. Смотрим рис1, иллюстрирующий начинку "Tashibra".

Схема справедлива для ЭТ "Tashibra" 60-150Вт. Издевательство же производилось на ЭТ 150Вт. Предполагается, однако, что ввиду идентичности схем, результаты экспериментов с легкостью можно проецировать на экземпляры как с меньшей, так и с большей мощностью.
И еще раз напомню, чего же не хватает "Tashibra" для полноценного блока питания.
1. Отсутствие входного сглаживающего фильтра (он же - противопомеховый, предотвращающий попадание продуктов преобразования в сеть),
2. Токовая ПОС, допускающая возбуждение преобразователя и его нормальную работу лишь при наличии определенного тока нагрузки,
3. Отсутствие выходного выпрямителя,
4. Отсутствие элементов выходного фильтра.

Попробуем исправить все перечисленные недостатки "Tashibra" и попытаемся добиться его приемлемой работы с желаемыми выходными характеристиками. Для начала даже не будем вскрывать корпус электронного трансформатора, а просто добавим недостающие элементы...

1. Входной фильтр: конденсаторы С`1, C`2 с симметричным двухобмоточным дросселем (трансформатором) T`1
2. диодный мост VDS`1 со сглаживающим конденсатором C`3 и резистором R`1 для защиты моста от зарядного тока конденсатора.

Сглаживающий конденсатор обычно выбирается из расчета 1,0 - 1,5мкФ на ватт мощности, а параллельно конденсатору следует подключить разрядный резистор сопротивлением 300-500кОм для безопасности (прикосновение к выводам заряженного относительно высоким напряжением конденсатора - не очень приятно).
Резистор R`1 можно заменить термистором 5-15Ом/1-5А. Такая замена в меньшей степени снизит КПД трансформатора.
На выходе ЭТ, как показано в схеме на рис3, подсоединим цепь из диода VD`1, конденсаторов C`4-C`5 и дросселя L1, включенного между ними, - для получения фильтрованного постоянного напряжения на выходе "пациента". При этом, на полистироловый конденсатор, размещенный непосредственно за диодом, приходится основная доля поглощения продуктов преобразования после выпрямления. Предполагается, что электролитический конденсатор, "спрятанный" за индуктивностью дросселя, будет выполнять лишь свои прямые функции, предотвращая "провал" напряжения при пиковой мощности подключенного к ЭТ устройства. Но и параллельно ему рекомендуется установить неэлектролитический конденсатор.

После добавления входной цепи в работе электронного трансформатора произошли изменения: амплитуда выходных импульсов (до диода VD`1) несколько возросла за счет повышения напряжения на входе устройства за счет добавления C`3 и модуляция частотой 50Гц уже практически отсутствует. Это - при расчетной для ЭТ нагрузке.
Однако этого недостаточно. "Tashibra" не желает запускаться без существенного тока нагрузки.
Установка на выходе преобразователя нагрузочных резисторов для возникновения какого-либо минимального значения тока, способного запустить преобразователь, лишь снижает общий КПД устройства. Запуск при токе нагрузки около 100мА производится на очень низкой частоте, которую достаточно сложно будет отфильтровать, если блок питания предполагается для совместного применения с УМЗЧ и другим аудио-оборудованием с небольшим током потребления в режиме отсутствия сигнала, например. Амплитуда импульсов при этом также - меньше, чем при полной нагрузке. Изменение частоты в режимах различной мощности - довольно сильное: от пары до нескольких десятков килогерц. Это обстоятельство накладывает существенные ограничения на использование "Tashibra" в таком (пока еще) виде при работе со многими устройствами.
Но - продолжим.
Встречались предложения подключения дополнительного трансформатора к выходу ЭТ, как это показано, например, на рис2.

Предполагалось, что первичная обмотка дополнительного трансформатора способна создать ток, достаточный для нормальной работы базовой схемы ЭТ. Предложение, однако, заманчиво лишь тем, что не разбирая ЭТ, с помощью дополнительного трансформатора можно создать набор необходимых (по своему вкусу) напряжений. На самом деле тока холостого хода дополнительного трансформатора недостаточно для запуска ЭТ. Попытки увеличения тока (вроде лампочки на 6,3ВХ0,3А, подключенной к дополнительной обмотке) , способного обеспечить НОРМАЛЬНУЮ работу ЭТ, приводили лишь к запуску преобразователя и зажиганию лампочки. Но, быть может, кого-то заинтересует и этот результат, т.к. подключение дополнительного трансформатора справедливо и во многих других случаях для решения множества задач. Так, например, дополнительный трансформатор можно использовать совместно со старым (но рабочим) компьютерным БП, способного обеспечить значительную мощность на выходе, но имеющего ограниченный (зато - стабилизированный) набор напряжений.

Можно было бы и далее продолжать искать истину в шаманстве вокруг "Tashibra", однако, я счел для себя эту тему исчерпанной, т.к. для достижения необходимого результата (устойчивый запуск и выход на рабочий режим при отсутствии нагрузки, а, значит, и - высокий КПД; небольшое изменение частоты при работе БП от минимальной до максимальной мощности и устойчивый запуск при максимальной нагрузке) гораздо эффективней - влезть внутрь "Tashibra" и произвести все необходимые изменения в схеме самого ЭТ таким образом, как это показано на рис 4. Тем более, что
с пол-сотни подобных схем мною было собрано еще во времена эры компьютеров "Спектрум" (именно для этих компьютеров). Различный УМЗЧ, запитанные аналогичными БП, где-то работают и сейчас. БП, выполненные по этой схеме, проявили себя с наилучшей стороны, работая, будучи собранными из самых различных комплектующих и в различных вариантах.

Переделываем? Конечно. Тем более, что это совсем не сложно.

Выпаиваем трансформатор. Разогреваем его для удобства разборки, чтобы перемотать вторичную обмотку для получения желаемых выходных параметров так, как показано на этом фото

или с помощью любых других технологий. В данном случае трансформатор выпаян лишь для того, чтобы поинтересоваться его моточными данными (кстати: Ш-образный магнитопровод с круглым керном, стандартных для компьютерных БП габаритов с 90 витками первичной обмотки, намотанными в 3 слоя проводом диаметром 0,65мм и 7-ю витками вторичной обмотки с впятеро сложенным проводом диаметром приблизительно 1,1мм; все это без малейшей межслойной и межобмоточной изоляции - только лак) и освободить место для другого трансформатора. Для экспериментов мне было проще использовать кольцевые магнитопроводы. Занимают меньше места на плате, что дает (при необходимости) возможность использования дополнительных компонентов в объеме корпуса. В данном случае использовалась пара ферритовых колец с внешним, внутренним диаметрами и высотой, соответственно 32Х20Х6мм, сложенных вдвое (без склеивания) - Н2000-НМ1. 90 витков первички (диаметр провода - 0,65мм) и 2Х12 (1,2мм) витков вторички с необходимой межобмоточной изоляцией. Обмотка связи содержит 1 виток монтажного провода диаметром 0,35мм. Все обмотки наматываются в порядке, соответствующем нумерации обмоток. Изоляция самого магнитопровода - обязательна. В данном случае магнитопровод обмотан двумя слоями изоленты, надежно, кстати, фиксируя сложенные кольца.

Перед установкой трансформатора на плату ЭТ, выпаиваем токовую обмотку коммутирующего трансформатора и используем ее в качестве перемычки, запаяв туда же, но уже не пропуская через окно кольца трансформатора. Устанавливаем намотанный трансформатор Tr2 на плату, запаяв выводы в соответствии со схемой на рис 4

и пропускаем провод обмотки III в окно кольца коммутирующего трансформатора. Используя жесткость провода, образуем подобие геометрически замкнутой окружности и виток обратной связи готов. В разрыв монтажного провода, образующего обмотки III обоих (коммутирующего и силового) трансформаторов, припаиваем достаточно мощный резистор (>1Вт) сопротивлением 3-10Ом.

На схеме в рис 4 штатные диоды ЭТ не используются. Их следует удалить, как, впрочем, и резистор R1 в целях повышения КПД блока в целом. Но можно и пренебречь несколькими процентами КПД и оставить перечисленные детали на плате. По крайней мере, в момент проведения экспериментов с ЭТ, эти детали оставались на плате. Резисторы, установленные базовых цепях транзисторов следует оставить - они выполняют функции ограничения тока базы при запуске преобразователя, облегчая его работу на емкостную нагрузку.
Транзисторы непременно следует установить на радиаторы через изолирующие теплопроводящие прокладки (повзаимствованные, например, у неисправного компьютерного БП), предотвратив, тем самым их

случайный мгновенный разогрев и обеспечив некоторую собственную безопасность в случае прикосновения к радиатору во время работы устройства. Кстати, электрокартон, используемый в ЭТ для изоляции транзисторов и платы от корпуса, не является теплопроводным. Поэтому при "упаковке" готовой схемы БП в штатный корпус, между транзисторами и корпусом следует установить именно такие прокладки. Лишь в этом случае будет обеспечен хоть какой-то теплоотвод. При использовании преобразователя с мощностями свыше 100Вт на корпус устройства необходимо установить дополнительный радиатор. Но это, так, - на будущее.
А пока, закончив монтаж схемы, выполним еще один пункт безопасности, включив его вход последовательно через лампу накаливания мощностью 150-200Вт. Лампа, в случае нештатной ситуации (КЗ, например) ограничит ток через конструкцию до безопасной величины и в худшем случае создаст дополнительное освещение рабочего пространства. В лучшем случае, при некотрой наблюдательности лампой можно пользоваться, как индикатором, например, - сквозного тока. Так, слабое (или несколько более интенсивное) свечение нити лампы при ненагруженном или слабо нагруженном преобразователе, будет свидетельствовать о наличии сквозного тока. Подтверждением может послужить температура ключевых элементов - разогрев в режиме сквозного тока будет довольно быстрым. При работе исправного преобразователя видимое на фоне дневного света свечение нити 200-ваттной лампы проявится лишь на пороге 20-35Вт.
Итак, все готово для первого пуска переделанной схемы "Tashibra". Включаем для начала - без нагрузки, но не забываем о предварительно подключенном вольтметре на выход преобразователя и осциллографе. При правильно сфазированных обмотках обратной связи, преобразователь должен запуститься без проблем. Если запуска не произошло, то провод, пропущенный в окно коммутирующего трансформатора (отпаяв его предварительно от резистора R5), пропускаем с другой стороны, придав ему, опять же, вид законченного витка. Подпаиваем провод к R5. Вновь подаем питание на преобразователь. Не помогло? Ищите ошибки в монтаже: КЗ, "непропаи", ошибочно установленные номиналы.
При запуске исправного преобразователя с указанными моточными данными, на дисплее осциллографа, подсоединенного к вторичной обмотке трансформатора Tr2 (в моем случае - к половине обмотки) будет отображена неизменяющаяся во времени последовательность четких прямоугольных импульсов. Частота преобразования подбирается резистором R5 и в моем случае при R5=5,1Ohm, частота ненагруженного преобразователя составила 18кГц. При нагрузке 20Ом - 20,5кГц. При нагрузке 12Ом - 22,3кГц. Нагрузка подсоединялась непосредственно к контролируемой приборами обмотке трансформатора с действующим значением напряжения 17,5В. Расчетное значение напряжения было несколько иным (20В), но выяснилось, что вместо номинала 5,1Ом, сопротивление установленного на плате R1=51Ом. Будьте внимательны к подобным сюрпризам от китайсикх товарищей. Впрочем, я счел возможность продолжить эксперименты без замены этого резистора, несмотря на его существенный, но терпимый нагрев. При отдаваемой преобразователем мощности в нагрузку около 25Вт, мощность, рассеиваемая на этом резисторе не превышала 0,4Вт.
Что же касается потенциальной мощности БП, то при частоте 20кГц установленный трансформатор сможет отдать в нагрузку не более 60-65Вт.
Попробуем частоту повысить. При включении резистора (R5) сопротивлением 8,2Ом, частота преобразователя без нагрузке возросла до 38,5кГц, с нагрузкой 12Ом - 41,8кГц.

При такой частоте преобразования с имеющимся силовым трансформатором можно смело обслужить нагрузку мощностью до 120Вт.
С сопротивлениями в цепи ПОС можно экспериментировать и дальше, добиваясь необходимого значения частоты, имея ввиду, однако, что слишком большое сопротивление R5 может приводить к срывам генерации и нестабильному запуску преобразователя. При изменении параметров ПОС преобразователя, следует контролировать ток, проходящий через ключи преобразователя.
Можно эксперементировать так же и с обмотками ПОС обоих трансформаторов на свой страх и риск. При этом следует предварительно произвести расчеты количества витков коммутирующего трансформатора по формулам, размещенным на страничке /stats/Blokpit02.htm, например, или с помощью оной из программ г-на Москатова, размещенных на страничке его сайта /Design_tools_pulse_transformers.html.
Можно избежать нагрева резистора R5, заменив его... конденсатором.

Цепь ПОС при этом безусловно пробретает некоторые резонансные свойства, но каких либо ухудшений в работе БП не проявляется. Более того, конденсатор, установленный взамен резистора, нагревается значительно меньше, чем замененный резистор. Так, частота при установленном конденсаторе емкостью 220nF, возросла до 86,5кГц (без нагрузки) и составила при работе на нагрузку 88,1кГц. Запуск и работа

преобразователя оставались такими же стабильными, как и в случае с применением резистора в цепи ПОС. Заметим, что потенциальная мощность БП пи такой частоте возрастает до 220Вт (минимально).
Мощность трансформатора: значения - приблизительны, с определенными допущениями, но - не завышены.
К сожалению, у меня не было возможности для испытания БП с большим нагрузочным током, но, полагаю, что и описания произведенных экспериментов достаточно для того, чтобы обратить внимание многих на такие, вот, простые схемки преобразователей питания, достойных для использования в самых различных конструкциях.
Заранее приношу извинения за возможные неточности, недоговоренности и погрешности. Исправлюсь в ответах на ваши вопросы.

Как за час сделать импульсный блок питания из сгоревшей лампочки?

В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.

Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов./

Построить блок питания будет ненамного сложнее, чем прочитать эту статью. И уж точно, это будет проще, чем найти низкочастотный трансформатор подходящей мощности и перемотать его вторичные обмотки под свои нужды.

    Вступление.

    Отличие схемы КЛЛ от импульсного БП.

    Какой мощности блок питания можно изготовить из КЛЛ?

    Импульсный трансформатор для блока питания.

    Ёмкость входного фильтра и пульсации напряжения.

    Блок питания мощностю 20 Ватт.

    Блок питания мощностью 100 ватт

    Выпрямитель.

    Как правильно подключить импульсный блок питания к сети?

    Как наладить импульсный блок питания?

    Каково назначение элементов схемы импульсного блока питания?

Вступление.

В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП). Единственное, чем схема электронного балласта отличается от настоящего импульсного БП, это отсутствием разделительного трансформатора и выпрямителя, если он необходим./

В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных КЛЛ, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

2024 professiya-online.ru. Программы. Интернет. Windows. Советы. Гаджеты. Ноутбуки.